ANATOMIA DE JT65 parte 3

Este es el tercer artículo sobre descripción del modo de transmisión digital JT65.

En el anterior articulo habíamos visto que JT65 maneja siempre mensaje de 72 bit en el cual esta codificado la información estandarizada o un posible texto de máximo 13 caracteres.  El hecho que es siempre de 72 caracteres tiene ventajas en el lado de recepción ya que la integridad del mensaje pasa por controlar el tamaño del mismo.

Como el objetivo de JT65 es hacerlo robusto en ambientes de señales débiles y mucho ruido entonces a los 72 bits del mensaje se le adiciona 306 bits de información correspondiente a Forward Corrección Error FEC (corrección de errores hacia adelante).  Esto es una información redúndate pero que ayuda a el receptor detecte y corrija posibles errores en la recepción causados por la debilidad de la señal.

Esto es equivalente a un método tradicionalmente usado en radio afición, si yo quiere enviar mi indicativo de llamada HK3EU, acostumbro a decir “Hotel Kilo tres Eco Unión” con lo cual en vez de enviar 5 caracteres de mi indicativo trasmito 20 que constituye información redúndate  pero que ayuda a que un receptor reciba correctamente mi indicativo en condiciones de ruido.

Ahora bien, para mensajes digitales  se puede agregar la información redundante usando procesos matemáticos desarrollados a partir de consideraciones probabilísticas para lograr un código eficiente en cuanto a longitud y capacidad de corregir un número grande de posibles errores.

Para el caso de JT65 se escogió un código FCE llamado Reed-Salomon  en honor a Irwin Reed y Gustave Salomon que desarrollaros el soporte matemático en 1960. El FCE de Reed-Salomon es extensamente usado en el mundo de las telecomunicaciones, está incluido en la telefonía celular y en la televisión digital terrestre TDT y también en el almacenamiento de información en discos CD, DVD y discos duros.

Para el JT65, Reed-Salomon genera 306 bits de FCE que se adicionan a los 72 bit del mensaje para un total de 378 bits que son los que se van a transmitir realmente. Debemos entonces distinguir que el mensaje es de 72 bits y 378 lo vamos a llamar “codewords” (palabra de código).

En la práctica esto se logra segmentando los 72 bits del mensaje en 12 segmentos o símbolos de 6 bits cada uno, esto es codificado por Reed-Salomon RS(63,12) en 63 simbolos de 6 bit cada uno (63 x 6 = 378 bits).  Podemos  imaginarnos los datos colocados en una matriz de 63 columnas y 6 filas donde están nuestros 378 bits de codewords.

Los 63 bits van a ser transmitidos por medio de 64 diferentes tonos en un modelo de modulación FSK (Frequency Shift keying) en donde cada intervalo se emiten 64 diferentes tonos dependiendo del valor del bit correspondiente. En realidad se emiten 64 tonos y uno adicional usado para sincronización por lo que en total el sistema trabaja con 65 tonos y de ahí su denominación JT65, JT por Joe Taylor su creador y 65 por los 65 tonos. Actualmente hay otra variante, JT9 en donde se emiten 8 tonos más uno de sincronismo.

Una transmisión de JT65 consta de 126 intervalos continuos de 0,372 segundos de duración, lo cual toma 126 x 0,372 = 46,872 segundos (~47 seg). En cada intervalo se transmite 65 posibles tonos de amplitud constante que son 64 de datos y uno de sincronización. El primer tono utiliza la frecuencia de 1270,5 Hz  y la frecuencia de los diferentes tonos está dada por la fórmula 1270,5 + 2,6917(N+2) donde N es el número del tono de 1 a 63. Esto significa que los tonos están uniformemente separados 2,6917 Hz y el ancho de banda seria de 65*2,6917 = 174,96 Hz. Esto corresponde a la especificación JT65A.  Hay una variante llamada JT65B que utiliza separación de tonos el doble 2,6917*2 = 5,3834 y otra llamada JT65 con separación 4 veces mayor (doble que JT65B). Debido a los estrechos márgenes de los intervalos se requiere que la propia señal lleve información de sincronismo y que las secuencias entre transmisión y recepción sean estrictamente controladas. Todas las transmisiones de JT65 deben empezar 1 segundo después del inicio del minuto UTC y se transmiten 126 secuencias separadas 0,372 segundos (126 * 0,372 seg = 46,872) por lo que la transmisión termina aproximadamente en el segundo 48. El tono de sincronismo se emite como un 1 en cada uno de los intervalos.

Los 65 tonos son generados en la tarjeta de sonido de un computador y lucen como tonos audibles de audio los cuales son entregados al micrófono  un transmisor de SSB en modalidad USB que los traslada en frecuencia a la frecuencia de operación en radio. El resultado en radiofrecuencia es una señal de 65 diferentes frecuencias moduladas en amplitud en un ancho de banda de 175 Hz (JT65A).

Cuando la señal de JT65 es detectada por el radio receptor como una señal de USB el receptor la baja a banda base y la entrega como una señal de audio de 0 a 3 kHx. Esta señal de audio se entrega a un tarjeta de sonido de un computador que no es otra cosa sino un DSP (Digital Signal Procesor) que maneja la señal en forma digital. Lo primero es convertir la señal recibida que es análoga a una información digita con una velocidad de muestreo de 11025 muestras (samples) por segundo. La información digital es procesada por el computador usando técnicas de análisis conocido como Transformada de Fourie esperando encontrar un tono de sincronismo. Pueden haber varios como trasmisiones simultáneas se estén realizando.

Cuando el procesador detecta la frecuencia de sincronismo conoce entonces que tan separado es el desvió (frequency Offset FO)en la banda base.  Conocido el desvió (off set) puede entonces detectar los 63 tonos que le permitirán encontrar lo 378 bit de la codeword del mensaje recibido.

El codeword de 378 bits es procesado por Reed-Salomon inversa para extraer los 72 bit del mensaje de JT65 con eliminación y corrección de errores. Finalmente los 72 bit del mensaje se decodifican a texto más entendible por los humanos.

 

 

 

 

Anuncios

Anatomía del modo JT65, parte 1

Actualmente (año 2017) ha aparecido en el campo de los Radioaficionados de Onda Corta un modo de comunicación conocido como JT65 del cual se han derivados otros como el JT9 y el FT8.  Estos modos tienen algunas características interesantes que vale la pena estudiar que lo diferencia de los modos más tradicionales y que lo hacen más eficiente.  El presente artículo trata de analizar como el modo JT65 trabaja y debido a la variedad de técnicas que utiliza va a ser escrito en varias partes.

El primer modo de transmisión en radio, que sorprendentemente aún se sigue usando, es la telegrafía más conocida en el mundo de los radioaficionados como CW (continuos wave). La telegrafía fue diseñada para transmitir textos escritos, es decir, emite los diferentes caracteres que forman una palabra  que a su vez forman frases con información coherente. Su objetivo era transmitir mensajes escritos a la distancia en lo que se constituyó el “telegrama”.

Los radioaficionados ha usado la telegrafía también desde el principio pero el objetivo no es enviar textos coherentes sobre un tema si no que se usa principalmente para confirmar que se ha hecho contacto entre dos estaciones. Por lo menos este es el objeto del DX pero también existe las excepciones y muchos radioaficionados mantienen verdaderos diálogos usando telegrafía. Los mensajes de los radioaficionados consta de palabras codificadas como son el indicativo de llamada (HK3EU, WA3CDF, F5JJH, etc), los códigos Q (QAP, QRZ, QTH, etc) palabras abreviadas (TX, DE, TN, 73 etc) y rara vez transmiten palabras de uso corriente.

En telegrafía se emite uno a uno los caracteres que forman una palabra. Cada carácter se convierte a un símbolo de código llamado Morse en honor a su inventor. El código Morse consiste en una combinación de puntos y rayas único para cada letra.  Es así como la letra “A” se codifica como “- .”, la letra “B” como “- . . .”, … la ”M” como “- -“ etc.  La telegrafía por ser un sistema primitivo solo se pueden emitir las 27 letras del alfabeto usado en el inglés, los numero (0, 1’ …, 9), algunos caracteres especiales  como la coma, guion, etc.  No se hace distinción entre letras mayúsculas y minúsculas ni existen códigos para caracteres usados en otros idiomas como la “eñe”  del español  o las vocales con acento.

Esencialmente la telegrafía es codificada y decodificada por humanos lo que le produce una desventaja ya que esta propensa a tener errores propios del comportamiento humano.  Para eliminar el factor humano se inventó el Teletipo en el cual una maquina se encarga de codificar o decodificar los caracteres  de acuerdo a unas tablas que da el código para cada carácter. En transmisiones de radio el teletipo paso a llamase “Radioteletipo” y se abrevia como RTTY.

Tanto la telegrafía, CW, como el RTTY transmiten mensajes codificando uno a uno los caracteres de un texto preestablecido.  En los últimos años ha aparecido un modo conocido como PSK31 que su objetivo es mejorar y modernizar el RTTY cambiando la codificación y el modo de transmitir. Con la aparición de los computadores personales PC,  la implementación de RTTY y PSK31 se ha movido a los PC. El usuario introduce el texto a enviar usando el teclado del PC, computacionalmente los caracteres se codifican y se preparan para ser transmitido,  los PC suministran la información procesada como señales de audio que se entregan a transmisores de banda lateral (SSB) como los usados por los radioaficionadas. El transmisor emite la información por ondas electromagnéticas que serán captadas por el receptor remoto de la estación corresponsal. La señal de radio recibida por el receptor se entrega al PC que usando procesos computacionales decodifica el carácter recibido y lo presenta en la pantalla del PC.

El efecto en forma simplificada es como si el emisor oprime una tecla en su PC y causa que el carácter aparezca en la pantalla del PC del receptor remoto. Por eso estos sistemas son conocidos actualmente como “orientados a teclado”.

CW, RTTY, PSK31 y otros modos similares son muy eficientes para transferir textos a la distancia, pero cuando estas informaciones son enviadas por ondas de radio se presentan algunos inconvenientes. Con la distancia las señales de radio se debilitan dificultando que el receptor capte la señal enviada, además se presenta ruido que también afecta al receptor y de esta manera el receptor se confunde afectando la fidelidad de la señal recibida y el codificador puede equivocarse en la detección del carácter recibido.  Bajo estas circunstancias algunos caracteres del mensaje recibido son cambiados.  Uno que otro cambio de caracteres puede ser aceptable ya que la mente humana puede corregir el error por contexto, pero si el número de caracteres cambiados es alto el texto se vuelve ininteligible y la comunicación se vuelve inutilizable.

Para ese ambiente de señales débiles y mucho ruido es que ha aparecido el modo JT65 con el objetivo de lograr comunicaciones confiables. En el campo de la exploración aeroespacial ha surgido el problema de lograr comunicaciones y transmisión de imágenes y datos de sondas espaciales enviada a nuestros planetas cercanos pero que se encuentran a varios cientos de millones de kilómetros, además estas sondas no disponen de mucha energía entonces sus transmisores son de potencia modesta y por lo tanto las señales recibida en la tierra son muy pero muy débiles. La  NASA y algunos científicos han estudiado el problema de cómo lograr comunicaciones muy confiables y exactas  de señales extremadamente débiles captadas de las sondas espaciales.  JT65 incorpora varias de las técnicas usadas en la exploración espacial para lograr comunicaciones Tierra-Luna-Tierra y de HF con señales muy débiles, el resultado en HF ha sido la posibilidad de obtener comunicaciones precisas con un transmisor de apenas unos vatios con casi cualquier lugar del mundo y comunicaciones de rebote Lunar con apenas unos 100 vatios y equipo comúnmente usado por los radioaficionado.

El modo JT65 y similares como JT9 y FT8, surgen de un proyecto denominado  WSJT “Weak Signal Joe Tailor” (Weak = débil) auspiciado por el Dr Joseph Hooton Taylor (Joe Taylor), un insigne radioaficionado K1JT, eminente científico profesor de la Universidad de Pricenton y Hardvard honrado con el premio Nobel de Física en 1993 por sus estudios de astrofísica relacionado con la detección de Pulsares con radiotelescopios.

Como se transmite enl JT65 será el tema del siguiente artículo.

2008JosephTaylor.jpg

Fotografía de Joe Taylor inventor de JT65